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Summary

This article describes a way to simulate moving trains along a railway track, while using as little CPU
resources as possible and appearing realistic.

Tracks are represented as lines or arcs, which are connected to a single other track at both ends.
Switches have three or more tracks: a leading track which is connected to a single branch, and branches
which all connect back to the leading track.

All tracks have a fixed length, points can be placed anywhere along the track as “measures”.
Trains are represented by a set of bogies, with a fixed distance between them. Each bogie is a measure

along a track. This means when updating the position of a bogie, it only has to work in 1 dimension.
Trains move by moving all it’s bogies with the same speed. When any bogie leaves a track, it moves

to the next track and continues.
If a train encounters an end of a track without another one connected to it, it will derail. This will

also happen if different bogies of the same train start traveling on tracks the first bogie did not travel
on. Trains can also collide with each other when the occupy the same portion of a track.

At each point along this simulation, it loses tiny bits of realism, but these are negligible and at every
step the simulation has ways to correct itself.

1 Introduction

This article came to be from a research project to find options for a train dispatching simulation,
simulating the old signalling systems of (Dutch) railways. In order to simulate these signalling systems
with any level of accuracy, it is vital to provide a realistic simulation for train movements along railway
tracks.

This article focuses on the interface between trains and railway tracks. The physics, traction, accel-
eration and deceleration of these trains are outside the scope of this article.

2 Real world characteristics

In real life, a train drives to whatever direction the track beneath it is going. The route of the train is
determined by the geometry of these track, and the position of the railroad switches. Tracks have a fixed
position and length, with switches being the only dynamic parts if the track.

Both the trains and track can be subdivided into their components. Each train consists of 1 or more
carriages. These carriages (realistically) have 2 or more bogies. These are the “points” around which
each carriage turns. The distance between the bogies within a single carriage is fixed. The distance
between bogies from different carriages can differ in reality, but can be set to an average distance.

The railroad consists of different tracks. These can be straight or curved. A portion of the railroad
consists of 1 or more tracks. A switch has 3 or more tracks: 1 for the leading portion, and 1 for each
direction it branches.
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3 Simulation design

The simulated world should be a simplified version of the real world, which mimics the characteristics
as close as possible. Because this is intended for a railway signalling simulation, it’s more important the
train simulation consumes as little CPU resources as possible, so some trade-offs in realism will be made.
Our train simulation has the following requirements:

1. It must be efficient for computers to calculate

2. To the end user, it must look as realistic as possible. This means that they shouldn’t be able to
notice any shortcuts the simulation takes by looking at a map view or their signalling panel

3.1 Track design

In the simulation, tracks can be simulated the same was as they exist in real life. A track is either of
type line or arc. Real world tracks have transition arcs too, but these will be ignored. For both lines
and arcs, all required attributes (for example position and length) can be calculated fast.

The geometry of the track is calculated using 2D coordinates. A possible simplification is to use a
Cartesian coordinate system using meters as the x and y values, instead of a spatial reference system
like WGS84.

Each track has a fixed length. We can make use of this for defining any point related to railway
tracks. A point along a track is called a “measure”. It’s unit is distance, which means the distance along
the track from it’s starting point. A measure can always be calculated into a distinct 2D coordinate if
need be, for example when rendering the railroad, trains and any other elements related to the tracks.

All tracks are connected to 1 other track at the start, and 1 other track at the end. This also applies
to switches. The start of both branches connect to the same leading track, but the leading track only
connects to at most 1 of the branches. It can also connect to none of the branches, if the switch is not
in it’s final position.

If the simulation encounters a train reaching the end of a track without another track connected to
it, this can be counted as a derailment, and it’s up to the specifics of the actual simulation on how to
handle that.

3.2 Train design

Following a single bogie along a railway is pretty straight forward this way. The bogie has a track on
which it starts, including a measure for the exact position along that track. When it starts to travel, at
some point it will reach one of the ends of the track (it’s measure will drop below 0 or become bigger
than the track length). At this moment, it finds the track which is connected to that end of the current
track, and continues it’s journey on the new track. Rinse and repeat.

Following this logic, a train would be a set of bogies connected together. What options there are for
simulating a train are discussed in the next chapter.
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4 Simulating trains

For simulating trains, the least CPU intensive way is to split the train into it’s carriages, split those into
their bogies and represent these bogies as measures along a track. This way, trains are simulated in a
1D environment, without the need of calculating 2D coordinates for each position update.

4.1 The shrinkage problem

But if we assume a train can be simulated as a set of bogies, and these bogies are purely represented by
a measure on a track, we run into a problem. Representing the bogies by a measure on a track means
the distance between these bogies is constant along the center line of the track. But when the train is
in a curve, this doesn’t ensure the straight distance between these bogies is always the same. This is
caused because the distance between the bogies along the track is greater than the straight line distance
between them. Figure 1 shows an exaggerated version of this. In this figure, distance a (the distance
between the bogies along the center line of the track) is constant, which means distance b (the actual
length of the carriage) has to shrink.

Bogie 1 Bogie 2
a

b

Figure 1: Railway carriage on a track with a narrow curve

For a real carriage, the straight line distance between it’s bogies is constant. When they go through
curves, both bogies can have a different speed to account for this phenomenon and keep the distance
between it’s bogies constant.

Simulating carriages this way means the carriage will become shorter when going through curves,
and correct itself again when back on straight track. This doesn’t have to be a problem, as long as this
shrinkage is not noticeable in the simulation.

To determine if this is acceptable, the worst case scenario for a Dutch railway was calculated. Normal
curves are at least 2000m, but inside railway stations, when going through switches, they can become
as little as 195m. A normal carriage has a maximum length of 25m. The distance between the bogies
will be less, because they usually are not at the far ends of a carriage, but this calculation didn’t take
that into account, as that will only make the effect less pronounced. With these values, the result is as
follows:

b = 2r sin(
a

2r
)

= 2 · 195 · sin( 25

2 · 195
)

= 24.983m

(1)

This means that in the worst case scenario for a Dutch railway, the carriage will be 1.7cm shorter
than it should be. The bogies on the track should be further apart to compensate for the curve. When
calculating a carriage or train from the front and working backwards, this will have no consequences for
when a carriage enters a new track, but if the track is split in the middle of such a curve, this means the
carriage will leave the last track sooner.

Assuming the carriage is travelling at 40km/h through this curve, it will leave the track 0.0016
seconds earlier than it should. If this would be a long passenger train, and this error would stack up
over all carriages, a train of 12 carriages would leave the last track 0.02 seconds earlier than it should.

In the simulation, the position of each train will be updated periodically. The tick rate (the number
of times the train position will be updated every second) for the simulation has not been determined
yet. The higher this tick rate, the more sensitive it becomes to little anomalies like this shrinkage. As
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of writing, the assumption is the tick rate for the simulation will be no bigger than 25t/s. With this
tick rate, there will be 0.04 seconds between each position update. Both previously calculated values are
within this time window. That means for this scenario, the limiting factor on how fast other components
of the simulation will receive information from the trains is the tick rate, and not the shrinkage of
carriages.

The advantage of simulating trains this way is that to the simulation, the train has a constant length
(according to it’s 1D simulation) and all bogies and carriages have the same speed. This simplifies the
interaction with these trains greatly. Apart from that, it should be one of the most CPU efficient ways
to calculate, because simulating it in more complex ways requires calculating 2D coordinates for the
carriages and/or bogies, and simpler simulations start taking shortcuts that will be noticeable to end
users. Finally, simulating this way gives a lot of options to the simulation in the way of exchanging
information between the train and it’s tracks, and rendering trains for end users.

4.2 Navigating trains

Now that trains can be placed onto the track as a set of bogies, the next step is to make the trains move.
There are two options to achieve this.

The first option is to only move the first bogie. Every tick, this bogie is moved forward the correct
distance. After that, all other bogies are placed behind it, separated by the correct distance. It works
it’s way backwards from the first bogie. If it reaches the end of a track, it places the next bogie on the
next track, and so on. This has the advantage all bogies will always be the exact same distance from
each other along the center line of the track. The disadvantage is, it assumes the track behind the first
bogie is the track all parts of the train will use, and that working back from the first bogie will lead you
to the correct tracks.

Nearly always, that will be the case, but in certain edge cases this will lead to unexpected behaviour.
If the simulation would use dynamically generated tracks, this can become unpredictable. Secondly, if
going back onto the switch leads a different way or a railway switch would change position while the
train is passing, the train would follow the wrong path.

Therefor, a better way is to move each bogie individually. Using this method, once all bogies are
placed, every tick they all will be moved forward at the exact same speed. When any bogie reaches the
end of a track, it will go to the next track. Because they are all moving at the same speed, they will stay
at the exact same distance from each other along the center line of the track, even though each bogie
moves as if it’s on it’s own. The advantage is all bogies will follow the track from their current position,
like they would in real life. If a railway switch would change position while the train is passing, all the
bogies that come after will go a different route or will derail of the switch is not in it’s final position.

Using this method to simulate train movement, error could stack up over time due to rounding
errors, floating point errors, etc... This should be on the order of millimeters, but can be solved if
needed. Periodically, when all bogies are on the same track, the simulation can re-calculate the position
of each bogie by using the method described before: update the position of the first bogie, and work it’s
way backwards placing all other bogies at the correct distance. When all are on the same track, this can
cause no unexpected behaviour.
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5 Detecting problems

5.1 Derailment

Just like real life trains, simulated trains should be able to derail. In the simulation, a derailment can
be simplified into two possible causes:

1. A bogie leaves a track, and there is no track connected to that side

2. Bogies on a train start taking different paths, where the distance between the bogies of a carriage
starts to increase

The first item is trivial to calculate, this will be noticed immediately by the simulation when updating
the position of a bogie and not finding a track to go to. It’s up to the simulation how it handles this
event.

The second item is more CPU intensive to calculate, because it will need to calculate the 2D coor-
dinates for each bogie. However, this only has to be calculated when a bogie that is not the front one
goes onto a track that the front bogie has not accessed.

There are more possible causes for train derailment in real life, but these will either be ignored (for
example, G-force induced derailment when going through a curve too fast) or can be simulated using
the first cause (for example, a switch that malfunctions).

5.2 Collisions

In order to defect if trains have collided with each other, the simulation should keep track which train
occupies which portions of track. For every train, this would be a list of tracks with two measures each:
from and to. If a train or carriage spans over multiple tracks, these measures will go to the end of
this track (either to 0 or to the track length). The simulation can compare the results from each train
to defect if they overlap. If they do, it can calculate the impact of the collision by the speed and 2D
direction of each train. It’s up to the simulation how to handle this event.

The main advantage of this method is that it doesn’t need to use 2D calculations as long as no
collision is detected. To further optimize, this check doesn’t have to occur every tick.

The disadvantage is that very short tracks can go unnoticed. If a track is shorter than the maximum
distance between bogies, it can go unnoticed. But this will only be for brief moments, and all other
tracks the train is present on will be taken into account. It is also possible to remedy this problem with
a slightly more complicated way of calculating what tracks the train is on. The simulation can find out
what tracks are in between the first and last bogie using a route finding algorithm.

6 To close off

While this article outlined a way to simulate trains along a railroad, simulating them doesn’t stop there.
To make the movement itself look realistic, their traction and breaking systems need to be simulated.
Furthermore, an AI needs to drive the train according to the signs and signals along the track. That AI
also needs to be able to find their way on a shunting ground, communicate to the dispatcher, and much
more.
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